Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 35(21)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38364265

RESUMO

We report for the first time MoS2/CNT hybrid nanostructures for memristor applications on flexible and bio-degradable cellulose paper. In our approach, we varied two different weight percentages (10% and 20%) of CNT's in MoS2to improve the MoS2conductivity and investigate the memristor device characteristics. The device with 10% CNT shows a lowVSETvoltage of 2.5 V, which is comparatively small for planar devices geometries. The device exhibits a long data retention time and cyclic current-voltage stability of ∼104s and 102cycles, making it a potential candidate in flexible painted electronics. Along with good electrical performance, it also demonstrates a high mechanical stability for 1000 bending cycles. The conduction mechanism in the MoS2-CNT hybrid structure is corroborated by percolation and defect-induced filament formation. Additionally, the device displays synaptic plasticity performance, simulating potentiation and depression processes. Furthermore, such flexible and biodegradable cellulose-based paper electronics may pave the way to address the environmental pollution caused by electronic waste in the near future.

2.
ACS Appl Mater Interfaces ; 15(35): 41447-41456, 2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37615402

RESUMO

Low-cost fabrication of customizable supercapacitors and batteries to power up portable electronic devices is a much-needed step in advancing energy storage devices. The processing methods and techniques involved in developing small-sized entities in complex patterns are expensive, tedious, and time-consuming. Here, we demonstrate the fabrication of customizable electrochemical supercapacitors and batteries by simply employing the universal and conventional paradigm of direct pen writing with hands and evaluating their energy storage performance. The fabrication technique involves the refilling of MoS2 ink into the pen and then scripting of MoS2 nanostructures onto various substrates. The electrode material employed here consists of nanoporous microspheres of MoS2 synthesized by a simple one-step hydrothermal method. Direct pen writing with porous MoS2 in complex patterns enables easy, affordable, and simple fabrication of energy storage devices as and when required based on user choice toward distributed manufacturing and sustainability.

3.
ACS Appl Mater Interfaces ; 15(29): 34818-34828, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37433087

RESUMO

Bipolar supercapacitors that can store many fold higher capacitance in negative voltage compared to positive voltage are of great importance if they can be engineered for practical applications. The electrode material encompassing high surface area, better electrochemical stability, high conductivity, moderate distribution of pore size, and their interaction with suitable electrolytes is imperative to enable bipolar supercapacitor performance. Apropos of the aforementioned aspects, the intent of this work is to ascertain the effect of ionic properties of different electrolytes on the electrochemical properties and performance of a porous CNT-MoS2 hybrid microstructure toward bipolar supercapacitor applications. The electrochemical assessment reveals that the CNT-MoS2 hybrid electrode exhibited a two- to threefold higher areal capacitance value of 122.3 mF cm-2 at 100 µA cm-2 in 1 M aqueous Na2SO4 and 42.13 mF cm-2 at 0.30 mA cm-2 in PVA-Na2SO4 gel electrolyte in the negative potential window in comparison to the positive potential window. The CNT-MoS2 hybrid demonstrates a splendid Coulombic efficiency of ∼102.5% and outstanding stability with capacitance retention showing a change from 100% to ∼180% over 7000 repeated charging-discharging cycles.

4.
Nanotechnology ; 34(11)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36595266

RESUMO

The demand for energy storage devices in wearable electronics effectuates a requisition for compressible and flexible supercapacitors with high performance and mechanical reliability. We report the fabrication of vanadium oxide hybrid with VACNT and its electrochemical supercapacitor performance along with the compression response. Compressive modulus of 730 ± 40 kPa is obtained for bare VACNT forest whereas its hybrid with vanadium oxide shows a compressive modulus of 240 ± 60 kPa. Controlled CVD process enabled the formation of porous CNT architecture coated with vanadium oxide particles due to the simultaneous reduction of V2O5and partial oxidation of CNT forest. Vanadium oxide decorated on vertically aligned carbon nanotubes acts as the active material for supercapacitor applications. A 17 folds increase in areal capacitance and 36 folds increase in volumetric capacitance are observed on depositing vanadium oxide particles on the VACNT forest. High coulombic efficiency of 97.8% is attained even after 10 000 charge-discharge cycles indicating the high stability of the hybrid.

5.
Nanoscale Adv ; 3(7): 2089-2102, 2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-36133083

RESUMO

The light-fostered supercapacitor performance introduces a new realm in the field of smart energy storage applications. Transition metal dichalcogenides (TMDCs) with direct band gap are intriguing candidates for developing a light-induced supercapacitor that can enhance energy storage when shined with light. Many TMDCs show a transition from a direct to indirect band gap as the layer number increases, while ReS2 possesses a direct band gap in both bulk and monolayer forms. The growth of such multi-layered 2D materials with high surface area on conducting substrates makes them suitable for smart energy storage applications with the ability to tune their performance with light irradiation. In this report, we present the growth of vertically aligned multi-layered ReS2 with large areal coverage on various conducting and non-conducting substrates, including stainless steel via chemical vapor deposition (CVD). To investigate the effect of light illumination on the charge storage performance, electrochemical measurements have been performed in dark and light conditions. Cyclic voltammetry (CV) curves showed an increase in the area enclosed by the curve, manifesting the increased charge storage capacity under light illumination as compared to dark. The volumetric capacitance value calculated from charging-discharging curves has increased from 17.9 F cm-3 to 29.8 F cm-3 with the irradiation of light for the as-grown ReS2 on a stainless steel plate. More than 1.5 times the capacitance enhancement is attributed to excess electron-hole pairs generated upon light illumination, contributing to the charge storage in the presence of light. The electrochemical impedance spectroscopy further augments these results. The high cyclic stability is attained with a capacitance retention value of 81% even after 10 000 repeated charging-discharging cycles.

6.
Nanotechnology ; 31(43): 435402, 2020 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-32619994

RESUMO

Integration of high surface area nanostructures with conducting and deformable electrodes at large scale are of significant importance for flexible supercapacitors with high cyclic stability and low cost. Here, we report water assisted meter scale growth of aligned iron oxide and CNT 1D nanostructures on flexible stainless steel mesh for asymmetric supercapacitor device applications. Electron microscopic investigations revealed the uniform coverage of both iron oxide and CNT forest nanostructures over one meter length of SS mesh. Both iron oxide and CNT nanostructures were tested for supercapacitor electrode material in neutral electrolytes. Further, asymmetric solid state devices were fabricated and connected in serial fashion to demonstrate glowing of LEDs as well as rotation of 5 V micro fan. In addition, at bending angle of 90°, device showed 68% increase whereas, at 180° it showed 13% decrease in capacitance. The calculated specific capacitance for single device is found to be 14.4 mF cm-2. Corresponding energy density and power density are found to be 3 µW-hr cm-2 and 0.74 mW cm-2 respectively. The device showed remarkable capacitance retention of 87% over 25 000 charge discharge cycles. The flexible nature with remarkable cyclic stability of solid state iron oxide/CNT device is suitable for low cost flexible and wearable supercapacitor applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...